'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
     , i(s(x1)) ->
       p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
     , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
     , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
     , p(p(s(x1))) -> p(x1)
     , p(s(x1)) -> x1
     , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))
    , i^#(s(x1)) ->
      c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
    , j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))
    , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
    , p^#(p(s(x1))) -> c_4(p^#(x1))
    , p^#(s(x1)) -> c_5()
    , p^#(0(x1)) -> c_6()}
  
  The usable rules are:
   {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
    , i(s(x1)) ->
      p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
    , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
    , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
    , p(p(s(x1))) -> p(x1)
    , p(s(x1)) -> x1
    , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
  
  The estimated dependency graph contains the following edges:
   {i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {i^#(s(x1)) ->
    c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
   {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
     ==> {p^#(0(x1)) -> c_6()}
   {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
     ==> {p^#(s(x1)) -> c_5()}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(0(x1)) -> c_6()}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(s(x1)) -> c_5()}
   {p^#(p(s(x1))) -> c_4(p^#(x1))}
     ==> {p^#(p(s(x1))) -> c_4(p^#(x1))}
  
  We consider the following path(s):
   1) {  i^#(s(x1)) ->
         c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , i^#(s(x1)) ->
                 c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {i^#(s(x1)) ->
             c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_5()
             , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {i^#(s(x1)) ->
               c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  i^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            and weakly orienting the rules
            {  i^#(s(x1)) ->
               c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_5()
             , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  i^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , i^#(s(x1)) ->
                   c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , p^#(s(x1)) -> c_5()
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , i^#(s(x1)) ->
                     c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , p^#(s(x1)) -> c_5()
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_0(21) -> 60
                 , i_0(21) -> 64
                 , i_1(87) -> 97
                 , i_1(87) -> 101
                 , i_2(127) -> 122
                 , i_2(127) -> 126
                 , i_2(138) -> 133
                 , i_2(138) -> 137
                 , i_2(208) -> 203
                 , i_2(208) -> 207
                 , i_2(219) -> 214
                 , i_2(219) -> 218
                 , i_2(289) -> 284
                 , i_2(289) -> 288
                 , i_2(300) -> 295
                 , i_2(300) -> 299
                 , i_2(370) -> 365
                 , i_2(370) -> 369
                 , i_2(381) -> 376
                 , i_2(381) -> 380
                 , 0_0(2) -> 2
                 , 0_0(2) -> 15
                 , 0_0(2) -> 17
                 , 0_0(2) -> 19
                 , 0_0(2) -> 20
                 , 0_0(2) -> 21
                 , 0_0(2) -> 22
                 , 0_0(2) -> 70
                 , 0_0(2) -> 72
                 , 0_0(2) -> 74
                 , 0_0(2) -> 87
                 , 0_0(2) -> 89
                 , 0_0(2) -> 381
                 , 0_0(2) -> 383
                 , 0_0(2) -> 391
                 , 0_0(2) -> 393
                 , 0_0(2) -> 395
                 , 0_0(4) -> 2
                 , 0_0(4) -> 15
                 , 0_0(4) -> 17
                 , 0_0(4) -> 19
                 , 0_0(4) -> 20
                 , 0_0(4) -> 21
                 , 0_0(4) -> 22
                 , 0_0(4) -> 70
                 , 0_0(4) -> 72
                 , 0_0(4) -> 74
                 , 0_0(4) -> 87
                 , 0_0(4) -> 89
                 , 0_0(4) -> 381
                 , 0_0(4) -> 383
                 , 0_0(4) -> 391
                 , 0_0(4) -> 393
                 , 0_0(4) -> 395
                 , 0_0(21) -> 14
                 , 0_0(21) -> 52
                 , 0_0(21) -> 56
                 , 0_0(22) -> 20
                 , 0_1(82) -> 15
                 , 0_1(82) -> 17
                 , 0_1(82) -> 19
                 , 0_1(82) -> 20
                 , 0_1(82) -> 21
                 , 0_1(87) -> 14
                 , 0_1(87) -> 60
                 , 0_1(87) -> 64
                 , 0_1(87) -> 66
                 , 0_1(87) -> 68
                 , 0_1(87) -> 69
                 , 0_1(87) -> 91
                 , 0_1(87) -> 97
                 , 0_1(87) -> 101
                 , 0_1(87) -> 376
                 , 0_1(87) -> 380
                 , 0_1(87) -> 389
                 , 0_2(413) -> 376
                 , 0_2(413) -> 380
                 , 0_2(413) -> 389
                 , p_0(2) -> 15
                 , p_0(2) -> 17
                 , p_0(2) -> 19
                 , p_0(2) -> 20
                 , p_0(2) -> 21
                 , p_0(4) -> 15
                 , p_0(4) -> 17
                 , p_0(4) -> 19
                 , p_0(4) -> 20
                 , p_0(4) -> 21
                 , p_0(4) -> 22
                 , p_0(4) -> 70
                 , p_0(4) -> 72
                 , p_0(4) -> 74
                 , p_0(4) -> 87
                 , p_0(4) -> 89
                 , p_0(4) -> 381
                 , p_0(4) -> 383
                 , p_0(4) -> 391
                 , p_0(4) -> 393
                 , p_0(4) -> 395
                 , p_0(12) -> 11
                 , p_0(16) -> 15
                 , p_0(18) -> 15
                 , p_0(18) -> 17
                 , p_0(20) -> 15
                 , p_0(20) -> 17
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 15
                 , p_0(22) -> 17
                 , p_0(22) -> 19
                 , p_0(22) -> 20
                 , p_0(22) -> 21
                 , p_0(51) -> 14
                 , p_0(53) -> 14
                 , p_0(53) -> 52
                 , p_0(54) -> 53
                 , p_0(55) -> 14
                 , p_0(55) -> 52
                 , p_0(61) -> 60
                 , p_0(62) -> 61
                 , p_0(63) -> 60
                 , p_1(65) -> 60
                 , p_1(65) -> 64
                 , p_1(67) -> 14
                 , p_1(67) -> 60
                 , p_1(67) -> 64
                 , p_1(67) -> 66
                 , p_1(67) -> 69
                 , p_1(67) -> 91
                 , p_1(67) -> 97
                 , p_1(67) -> 101
                 , p_1(67) -> 376
                 , p_1(67) -> 380
                 , p_1(67) -> 389
                 , p_1(68) -> 376
                 , p_1(68) -> 380
                 , p_1(68) -> 389
                 , p_1(69) -> 389
                 , p_1(71) -> 70
                 , p_1(73) -> 70
                 , p_1(73) -> 72
                 , p_1(75) -> 70
                 , p_1(75) -> 72
                 , p_1(75) -> 74
                 , p_1(76) -> 75
                 , p_1(77) -> 76
                 , p_1(78) -> 77
                 , p_1(79) -> 76
                 , p_1(80) -> 75
                 , p_1(81) -> 70
                 , p_1(81) -> 72
                 , p_1(81) -> 74
                 , p_1(81) -> 87
                 , p_1(81) -> 89
                 , p_1(88) -> 87
                 , p_1(90) -> 14
                 , p_1(90) -> 69
                 , p_1(90) -> 97
                 , p_1(90) -> 101
                 , p_1(90) -> 376
                 , p_1(90) -> 380
                 , p_1(90) -> 389
                 , p_1(91) -> 376
                 , p_1(91) -> 380
                 , p_1(91) -> 389
                 , p_1(92) -> 14
                 , p_1(92) -> 69
                 , p_1(92) -> 91
                 , p_1(92) -> 97
                 , p_1(92) -> 101
                 , p_1(92) -> 376
                 , p_1(92) -> 380
                 , p_1(92) -> 389
                 , p_1(93) -> 92
                 , p_1(96) -> 97
                 , p_1(96) -> 101
                 , p_1(97) -> 376
                 , p_1(97) -> 380
                 , p_1(98) -> 97
                 , p_1(98) -> 101
                 , p_1(99) -> 98
                 , p_1(100) -> 97
                 , p_1(100) -> 101
                 , p_1(101) -> 376
                 , p_1(101) -> 380
                 , p_1(380) -> 389
                 , p_2(68) -> 389
                 , p_2(69) -> 389
                 , p_2(91) -> 389
                 , p_2(102) -> 97
                 , p_2(102) -> 101
                 , p_2(102) -> 376
                 , p_2(102) -> 380
                 , p_2(103) -> 376
                 , p_2(103) -> 380
                 , p_2(103) -> 389
                 , p_2(104) -> 97
                 , p_2(104) -> 101
                 , p_2(104) -> 103
                 , p_2(104) -> 376
                 , p_2(104) -> 380
                 , p_2(105) -> 376
                 , p_2(105) -> 380
                 , p_2(105) -> 389
                 , p_2(106) -> 389
                 , p_2(108) -> 107
                 , p_2(110) -> 107
                 , p_2(110) -> 109
                 , p_2(112) -> 107
                 , p_2(112) -> 109
                 , p_2(112) -> 111
                 , p_2(113) -> 112
                 , p_2(114) -> 113
                 , p_2(115) -> 114
                 , p_2(116) -> 113
                 , p_2(117) -> 112
                 , p_2(118) -> 107
                 , p_2(118) -> 109
                 , p_2(118) -> 111
                 , p_2(118) -> 127
                 , p_2(118) -> 129
                 , p_2(123) -> 122
                 , p_2(124) -> 123
                 , p_2(125) -> 122
                 , p_2(125) -> 126
                 , p_2(128) -> 127
                 , p_2(134) -> 133
                 , p_2(135) -> 134
                 , p_2(136) -> 133
                 , p_2(136) -> 137
                 , p_2(139) -> 138
                 , p_2(141) -> 138
                 , p_2(141) -> 140
                 , p_2(141) -> 148
                 , p_2(141) -> 150
                 , p_2(141) -> 152
                 , p_2(142) -> 122
                 , p_2(142) -> 126
                 , p_2(149) -> 148
                 , p_2(151) -> 148
                 , p_2(151) -> 150
                 , p_2(153) -> 148
                 , p_2(153) -> 150
                 , p_2(153) -> 152
                 , p_2(154) -> 153
                 , p_2(155) -> 154
                 , p_2(156) -> 155
                 , p_2(157) -> 154
                 , p_2(158) -> 153
                 , p_2(170) -> 133
                 , p_2(170) -> 137
                 , p_2(177) -> 176
                 , p_2(179) -> 176
                 , p_2(179) -> 178
                 , p_2(181) -> 176
                 , p_2(181) -> 178
                 , p_2(181) -> 180
                 , p_2(182) -> 181
                 , p_2(183) -> 182
                 , p_2(184) -> 183
                 , p_2(185) -> 182
                 , p_2(186) -> 181
                 , p_2(187) -> 176
                 , p_2(187) -> 178
                 , p_2(187) -> 180
                 , p_2(187) -> 208
                 , p_2(187) -> 210
                 , p_2(204) -> 203
                 , p_2(205) -> 204
                 , p_2(206) -> 203
                 , p_2(206) -> 207
                 , p_2(209) -> 208
                 , p_2(215) -> 214
                 , p_2(216) -> 215
                 , p_2(217) -> 214
                 , p_2(217) -> 218
                 , p_2(220) -> 219
                 , p_2(222) -> 219
                 , p_2(222) -> 221
                 , p_2(222) -> 229
                 , p_2(222) -> 231
                 , p_2(222) -> 233
                 , p_2(223) -> 203
                 , p_2(223) -> 207
                 , p_2(230) -> 229
                 , p_2(232) -> 229
                 , p_2(232) -> 231
                 , p_2(234) -> 229
                 , p_2(234) -> 231
                 , p_2(234) -> 233
                 , p_2(235) -> 234
                 , p_2(236) -> 235
                 , p_2(237) -> 236
                 , p_2(238) -> 235
                 , p_2(239) -> 234
                 , p_2(251) -> 214
                 , p_2(251) -> 218
                 , p_2(258) -> 257
                 , p_2(260) -> 257
                 , p_2(260) -> 259
                 , p_2(262) -> 257
                 , p_2(262) -> 259
                 , p_2(262) -> 261
                 , p_2(263) -> 262
                 , p_2(264) -> 263
                 , p_2(265) -> 264
                 , p_2(266) -> 263
                 , p_2(267) -> 262
                 , p_2(268) -> 257
                 , p_2(268) -> 259
                 , p_2(268) -> 261
                 , p_2(268) -> 289
                 , p_2(268) -> 291
                 , p_2(285) -> 284
                 , p_2(286) -> 285
                 , p_2(287) -> 284
                 , p_2(287) -> 288
                 , p_2(290) -> 289
                 , p_2(296) -> 295
                 , p_2(297) -> 296
                 , p_2(298) -> 295
                 , p_2(298) -> 299
                 , p_2(301) -> 300
                 , p_2(303) -> 300
                 , p_2(303) -> 302
                 , p_2(303) -> 310
                 , p_2(303) -> 312
                 , p_2(303) -> 314
                 , p_2(304) -> 284
                 , p_2(304) -> 288
                 , p_2(311) -> 310
                 , p_2(313) -> 310
                 , p_2(313) -> 312
                 , p_2(315) -> 310
                 , p_2(315) -> 312
                 , p_2(315) -> 314
                 , p_2(316) -> 315
                 , p_2(317) -> 316
                 , p_2(318) -> 317
                 , p_2(319) -> 316
                 , p_2(320) -> 315
                 , p_2(332) -> 295
                 , p_2(332) -> 299
                 , p_2(339) -> 338
                 , p_2(341) -> 338
                 , p_2(341) -> 340
                 , p_2(343) -> 338
                 , p_2(343) -> 340
                 , p_2(343) -> 342
                 , p_2(344) -> 343
                 , p_2(345) -> 344
                 , p_2(346) -> 345
                 , p_2(347) -> 344
                 , p_2(348) -> 343
                 , p_2(349) -> 338
                 , p_2(349) -> 340
                 , p_2(349) -> 342
                 , p_2(349) -> 370
                 , p_2(349) -> 372
                 , p_2(366) -> 365
                 , p_2(367) -> 366
                 , p_2(368) -> 365
                 , p_2(368) -> 369
                 , p_2(371) -> 370
                 , p_2(375) -> 376
                 , p_2(375) -> 380
                 , p_2(376) -> 389
                 , p_2(377) -> 376
                 , p_2(377) -> 380
                 , p_2(378) -> 377
                 , p_2(379) -> 376
                 , p_2(379) -> 380
                 , p_2(380) -> 389
                 , p_2(382) -> 381
                 , p_2(384) -> 381
                 , p_2(384) -> 383
                 , p_2(384) -> 391
                 , p_2(384) -> 393
                 , p_2(384) -> 395
                 , p_2(385) -> 365
                 , p_2(385) -> 369
                 , p_2(392) -> 391
                 , p_2(394) -> 391
                 , p_2(394) -> 393
                 , p_2(396) -> 391
                 , p_2(396) -> 393
                 , p_2(396) -> 395
                 , p_2(397) -> 396
                 , p_2(398) -> 397
                 , p_2(399) -> 398
                 , p_2(400) -> 397
                 , p_2(401) -> 396
                 , s_0(2) -> 4
                 , s_0(2) -> 15
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 20
                 , s_0(2) -> 21
                 , s_0(2) -> 22
                 , s_0(2) -> 70
                 , s_0(2) -> 72
                 , s_0(2) -> 74
                 , s_0(2) -> 87
                 , s_0(2) -> 89
                 , s_0(2) -> 381
                 , s_0(2) -> 383
                 , s_0(2) -> 391
                 , s_0(2) -> 393
                 , s_0(2) -> 395
                 , s_0(4) -> 4
                 , s_0(4) -> 15
                 , s_0(4) -> 17
                 , s_0(4) -> 19
                 , s_0(4) -> 20
                 , s_0(4) -> 21
                 , s_0(4) -> 22
                 , s_0(4) -> 70
                 , s_0(4) -> 72
                 , s_0(4) -> 74
                 , s_0(4) -> 87
                 , s_0(4) -> 89
                 , s_0(4) -> 381
                 , s_0(4) -> 383
                 , s_0(4) -> 391
                 , s_0(4) -> 393
                 , s_0(4) -> 395
                 , s_0(11) -> 10
                 , s_0(13) -> 12
                 , s_0(14) -> 11
                 , s_0(14) -> 13
                 , s_0(17) -> 16
                 , s_0(19) -> 18
                 , s_0(22) -> 2
                 , s_0(22) -> 15
                 , s_0(22) -> 17
                 , s_0(22) -> 19
                 , s_0(22) -> 20
                 , s_0(22) -> 21
                 , s_0(22) -> 22
                 , s_0(22) -> 70
                 , s_0(22) -> 72
                 , s_0(22) -> 74
                 , s_0(22) -> 87
                 , s_0(22) -> 89
                 , s_0(22) -> 381
                 , s_0(22) -> 383
                 , s_0(22) -> 391
                 , s_0(22) -> 393
                 , s_0(22) -> 395
                 , s_0(52) -> 51
                 , s_0(55) -> 54
                 , s_0(56) -> 53
                 , s_0(56) -> 55
                 , s_0(57) -> 14
                 , s_0(58) -> 57
                 , s_0(59) -> 58
                 , s_0(60) -> 59
                 , s_0(63) -> 62
                 , s_0(64) -> 61
                 , s_0(64) -> 63
                 , s_1(2) -> 75
                 , s_1(2) -> 81
                 , s_1(2) -> 338
                 , s_1(2) -> 340
                 , s_1(2) -> 342
                 , s_1(2) -> 370
                 , s_1(2) -> 372
                 , s_1(4) -> 75
                 , s_1(4) -> 81
                 , s_1(4) -> 338
                 , s_1(4) -> 340
                 , s_1(4) -> 342
                 , s_1(4) -> 370
                 , s_1(4) -> 372
                 , s_1(22) -> 75
                 , s_1(22) -> 81
                 , s_1(22) -> 338
                 , s_1(22) -> 340
                 , s_1(22) -> 342
                 , s_1(22) -> 370
                 , s_1(22) -> 372
                 , s_1(66) -> 65
                 , s_1(67) -> 93
                 , s_1(68) -> 67
                 , s_1(68) -> 92
                 , s_1(69) -> 14
                 , s_1(69) -> 60
                 , s_1(69) -> 64
                 , s_1(69) -> 66
                 , s_1(69) -> 68
                 , s_1(69) -> 69
                 , s_1(69) -> 91
                 , s_1(69) -> 97
                 , s_1(69) -> 101
                 , s_1(69) -> 376
                 , s_1(69) -> 380
                 , s_1(69) -> 389
                 , s_1(72) -> 71
                 , s_1(74) -> 73
                 , s_1(78) -> 85
                 , s_1(78) -> 176
                 , s_1(78) -> 178
                 , s_1(78) -> 180
                 , s_1(78) -> 208
                 , s_1(78) -> 210
                 , s_1(79) -> 78
                 , s_1(79) -> 219
                 , s_1(79) -> 221
                 , s_1(79) -> 229
                 , s_1(79) -> 231
                 , s_1(79) -> 233
                 , s_1(80) -> 77
                 , s_1(80) -> 79
                 , s_1(80) -> 257
                 , s_1(80) -> 259
                 , s_1(80) -> 261
                 , s_1(80) -> 289
                 , s_1(80) -> 291
                 , s_1(81) -> 76
                 , s_1(81) -> 80
                 , s_1(81) -> 300
                 , s_1(81) -> 302
                 , s_1(81) -> 310
                 , s_1(81) -> 312
                 , s_1(81) -> 314
                 , s_1(82) -> 75
                 , s_1(82) -> 81
                 , s_1(82) -> 338
                 , s_1(82) -> 340
                 , s_1(82) -> 342
                 , s_1(82) -> 370
                 , s_1(82) -> 372
                 , s_1(83) -> 70
                 , s_1(83) -> 72
                 , s_1(83) -> 74
                 , s_1(83) -> 82
                 , s_1(83) -> 87
                 , s_1(83) -> 89
                 , s_1(83) -> 381
                 , s_1(83) -> 383
                 , s_1(83) -> 391
                 , s_1(83) -> 393
                 , s_1(83) -> 395
                 , s_1(84) -> 83
                 , s_1(84) -> 107
                 , s_1(84) -> 109
                 , s_1(84) -> 111
                 , s_1(84) -> 127
                 , s_1(84) -> 129
                 , s_1(85) -> 84
                 , s_1(85) -> 138
                 , s_1(85) -> 140
                 , s_1(85) -> 148
                 , s_1(85) -> 150
                 , s_1(85) -> 152
                 , s_1(89) -> 88
                 , s_1(91) -> 90
                 , s_1(94) -> 14
                 , s_1(94) -> 69
                 , s_1(94) -> 376
                 , s_1(94) -> 380
                 , s_1(94) -> 389
                 , s_1(95) -> 94
                 , s_1(95) -> 389
                 , s_1(96) -> 95
                 , s_1(97) -> 96
                 , s_1(100) -> 99
                 , s_1(101) -> 98
                 , s_1(101) -> 100
                 , s_2(2) -> 384
                 , s_2(2) -> 396
                 , s_2(4) -> 384
                 , s_2(4) -> 396
                 , s_2(22) -> 384
                 , s_2(22) -> 396
                 , s_2(78) -> 222
                 , s_2(78) -> 234
                 , s_2(79) -> 262
                 , s_2(79) -> 268
                 , s_2(80) -> 303
                 , s_2(80) -> 315
                 , s_2(81) -> 343
                 , s_2(81) -> 349
                 , s_2(82) -> 384
                 , s_2(82) -> 396
                 , s_2(83) -> 112
                 , s_2(83) -> 118
                 , s_2(84) -> 141
                 , s_2(84) -> 153
                 , s_2(85) -> 181
                 , s_2(85) -> 187
                 , s_2(87) -> 420
                 , s_2(103) -> 102
                 , s_2(105) -> 104
                 , s_2(106) -> 97
                 , s_2(106) -> 101
                 , s_2(106) -> 103
                 , s_2(106) -> 105
                 , s_2(106) -> 376
                 , s_2(106) -> 380
                 , s_2(109) -> 108
                 , s_2(111) -> 110
                 , s_2(116) -> 115
                 , s_2(117) -> 114
                 , s_2(117) -> 116
                 , s_2(118) -> 113
                 , s_2(118) -> 117
                 , s_2(119) -> 69
                 , s_2(119) -> 376
                 , s_2(119) -> 380
                 , s_2(119) -> 389
                 , s_2(120) -> 119
                 , s_2(120) -> 389
                 , s_2(121) -> 120
                 , s_2(122) -> 121
                 , s_2(125) -> 124
                 , s_2(126) -> 123
                 , s_2(126) -> 125
                 , s_2(129) -> 128
                 , s_2(130) -> 106
                 , s_2(130) -> 376
                 , s_2(130) -> 380
                 , s_2(130) -> 389
                 , s_2(131) -> 130
                 , s_2(131) -> 389
                 , s_2(132) -> 131
                 , s_2(133) -> 132
                 , s_2(136) -> 135
                 , s_2(137) -> 134
                 , s_2(137) -> 136
                 , s_2(140) -> 139
                 , s_2(141) -> 154
                 , s_2(141) -> 158
                 , s_2(144) -> 142
                 , s_2(146) -> 122
                 , s_2(146) -> 126
                 , s_2(146) -> 144
                 , s_2(150) -> 149
                 , s_2(152) -> 151
                 , s_2(157) -> 156
                 , s_2(158) -> 155
                 , s_2(158) -> 157
                 , s_2(172) -> 170
                 , s_2(174) -> 133
                 , s_2(174) -> 137
                 , s_2(174) -> 172
                 , s_2(178) -> 177
                 , s_2(180) -> 179
                 , s_2(185) -> 184
                 , s_2(186) -> 183
                 , s_2(186) -> 185
                 , s_2(187) -> 182
                 , s_2(187) -> 186
                 , s_2(200) -> 146
                 , s_2(201) -> 200
                 , s_2(202) -> 201
                 , s_2(203) -> 202
                 , s_2(206) -> 205
                 , s_2(207) -> 204
                 , s_2(207) -> 206
                 , s_2(210) -> 209
                 , s_2(211) -> 174
                 , s_2(212) -> 211
                 , s_2(213) -> 212
                 , s_2(214) -> 213
                 , s_2(217) -> 216
                 , s_2(218) -> 215
                 , s_2(218) -> 217
                 , s_2(221) -> 220
                 , s_2(222) -> 235
                 , s_2(222) -> 239
                 , s_2(225) -> 223
                 , s_2(227) -> 203
                 , s_2(227) -> 207
                 , s_2(227) -> 225
                 , s_2(231) -> 230
                 , s_2(233) -> 232
                 , s_2(238) -> 237
                 , s_2(239) -> 236
                 , s_2(239) -> 238
                 , s_2(253) -> 251
                 , s_2(255) -> 214
                 , s_2(255) -> 218
                 , s_2(255) -> 253
                 , s_2(259) -> 258
                 , s_2(261) -> 260
                 , s_2(266) -> 265
                 , s_2(267) -> 264
                 , s_2(267) -> 266
                 , s_2(268) -> 263
                 , s_2(268) -> 267
                 , s_2(281) -> 227
                 , s_2(282) -> 281
                 , s_2(283) -> 282
                 , s_2(284) -> 283
                 , s_2(287) -> 286
                 , s_2(288) -> 285
                 , s_2(288) -> 287
                 , s_2(291) -> 290
                 , s_2(292) -> 255
                 , s_2(293) -> 292
                 , s_2(294) -> 293
                 , s_2(295) -> 294
                 , s_2(298) -> 297
                 , s_2(299) -> 296
                 , s_2(299) -> 298
                 , s_2(302) -> 301
                 , s_2(303) -> 316
                 , s_2(303) -> 320
                 , s_2(306) -> 304
                 , s_2(308) -> 284
                 , s_2(308) -> 288
                 , s_2(308) -> 306
                 , s_2(312) -> 311
                 , s_2(314) -> 313
                 , s_2(319) -> 318
                 , s_2(320) -> 317
                 , s_2(320) -> 319
                 , s_2(334) -> 332
                 , s_2(336) -> 295
                 , s_2(336) -> 299
                 , s_2(336) -> 334
                 , s_2(340) -> 339
                 , s_2(342) -> 341
                 , s_2(347) -> 346
                 , s_2(348) -> 345
                 , s_2(348) -> 347
                 , s_2(349) -> 344
                 , s_2(349) -> 348
                 , s_2(362) -> 308
                 , s_2(363) -> 362
                 , s_2(364) -> 363
                 , s_2(365) -> 364
                 , s_2(368) -> 367
                 , s_2(369) -> 366
                 , s_2(369) -> 368
                 , s_2(372) -> 371
                 , s_2(373) -> 336
                 , s_2(374) -> 373
                 , s_2(375) -> 374
                 , s_2(376) -> 375
                 , s_2(379) -> 378
                 , s_2(380) -> 377
                 , s_2(380) -> 379
                 , s_2(383) -> 382
                 , s_2(384) -> 397
                 , s_2(384) -> 401
                 , s_2(387) -> 385
                 , s_2(389) -> 365
                 , s_2(389) -> 369
                 , s_2(389) -> 387
                 , s_2(393) -> 392
                 , s_2(395) -> 394
                 , s_2(400) -> 399
                 , s_2(401) -> 398
                 , s_2(401) -> 400
                 , s_2(413) -> 420
                 , s_2(414) -> 413
                 , s_2(415) -> 414
                 , s_2(416) -> 415
                 , s_2(417) -> 416
                 , s_2(418) -> 417
                 , s_2(419) -> 418
                 , s_2(420) -> 419
                 , j_0(15) -> 14
                 , j_1(70) -> 69
                 , j_1(70) -> 376
                 , j_1(70) -> 380
                 , j_1(70) -> 389
                 , j_2(107) -> 106
                 , j_2(107) -> 376
                 , j_2(107) -> 380
                 , j_2(107) -> 389
                 , j_2(148) -> 146
                 , j_2(176) -> 174
                 , j_2(229) -> 227
                 , j_2(257) -> 255
                 , j_2(310) -> 308
                 , j_2(338) -> 336
                 , j_2(391) -> 389
                 , i^#_0(2) -> 6
                 , i^#_0(4) -> 6
                 , p^#_0(2) -> 8
                 , p^#_0(4) -> 8
                 , p^#_0(10) -> 9
                 , p^#_1(65) -> 86
                 , c_1_0(9) -> 6
                 , c_1_1(86) -> 6
                 , c_5_0() -> 8
                 , c_5_0() -> 9
                 , c_5_1() -> 86}
      
   2) {i^#(s(x1)) ->
       c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
      
      The usable rules for this path are the following:
      {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , i^#(s(x1)) ->
                 c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {i^#(s(x1)) ->
             c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {i^#(s(x1)) ->
               c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [4]
                  i^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            and weakly orienting the rules
            {  i^#(s(x1)) ->
               c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [8]
                  i^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , i^#(s(x1)) ->
                   c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , i^#(s(x1)) ->
                     c_1(p^#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_0(21) -> 60
                 , i_0(21) -> 64
                 , i_1(87) -> 97
                 , i_1(87) -> 101
                 , i_2(127) -> 122
                 , i_2(127) -> 126
                 , i_2(138) -> 133
                 , i_2(138) -> 137
                 , i_2(208) -> 203
                 , i_2(208) -> 207
                 , i_2(219) -> 214
                 , i_2(219) -> 218
                 , i_2(289) -> 284
                 , i_2(289) -> 288
                 , i_2(300) -> 295
                 , i_2(300) -> 299
                 , i_2(370) -> 365
                 , i_2(370) -> 369
                 , i_2(381) -> 376
                 , i_2(381) -> 380
                 , 0_0(2) -> 2
                 , 0_0(2) -> 15
                 , 0_0(2) -> 17
                 , 0_0(2) -> 19
                 , 0_0(2) -> 20
                 , 0_0(2) -> 21
                 , 0_0(2) -> 22
                 , 0_0(2) -> 70
                 , 0_0(2) -> 72
                 , 0_0(2) -> 74
                 , 0_0(2) -> 87
                 , 0_0(2) -> 89
                 , 0_0(2) -> 381
                 , 0_0(2) -> 383
                 , 0_0(2) -> 391
                 , 0_0(2) -> 393
                 , 0_0(2) -> 395
                 , 0_0(4) -> 2
                 , 0_0(4) -> 15
                 , 0_0(4) -> 17
                 , 0_0(4) -> 19
                 , 0_0(4) -> 20
                 , 0_0(4) -> 21
                 , 0_0(4) -> 22
                 , 0_0(4) -> 70
                 , 0_0(4) -> 72
                 , 0_0(4) -> 74
                 , 0_0(4) -> 87
                 , 0_0(4) -> 89
                 , 0_0(4) -> 381
                 , 0_0(4) -> 383
                 , 0_0(4) -> 391
                 , 0_0(4) -> 393
                 , 0_0(4) -> 395
                 , 0_0(21) -> 14
                 , 0_0(21) -> 52
                 , 0_0(21) -> 56
                 , 0_0(22) -> 20
                 , 0_1(82) -> 15
                 , 0_1(82) -> 17
                 , 0_1(82) -> 19
                 , 0_1(82) -> 20
                 , 0_1(82) -> 21
                 , 0_1(87) -> 14
                 , 0_1(87) -> 60
                 , 0_1(87) -> 64
                 , 0_1(87) -> 66
                 , 0_1(87) -> 68
                 , 0_1(87) -> 69
                 , 0_1(87) -> 91
                 , 0_1(87) -> 97
                 , 0_1(87) -> 101
                 , 0_1(87) -> 376
                 , 0_1(87) -> 380
                 , 0_1(87) -> 389
                 , 0_2(413) -> 376
                 , 0_2(413) -> 380
                 , 0_2(413) -> 389
                 , p_0(2) -> 15
                 , p_0(2) -> 17
                 , p_0(2) -> 19
                 , p_0(2) -> 20
                 , p_0(2) -> 21
                 , p_0(4) -> 15
                 , p_0(4) -> 17
                 , p_0(4) -> 19
                 , p_0(4) -> 20
                 , p_0(4) -> 21
                 , p_0(4) -> 22
                 , p_0(4) -> 70
                 , p_0(4) -> 72
                 , p_0(4) -> 74
                 , p_0(4) -> 87
                 , p_0(4) -> 89
                 , p_0(4) -> 381
                 , p_0(4) -> 383
                 , p_0(4) -> 391
                 , p_0(4) -> 393
                 , p_0(4) -> 395
                 , p_0(12) -> 11
                 , p_0(16) -> 15
                 , p_0(18) -> 15
                 , p_0(18) -> 17
                 , p_0(20) -> 15
                 , p_0(20) -> 17
                 , p_0(20) -> 19
                 , p_0(21) -> 20
                 , p_0(22) -> 15
                 , p_0(22) -> 17
                 , p_0(22) -> 19
                 , p_0(22) -> 20
                 , p_0(22) -> 21
                 , p_0(51) -> 14
                 , p_0(53) -> 14
                 , p_0(53) -> 52
                 , p_0(54) -> 53
                 , p_0(55) -> 14
                 , p_0(55) -> 52
                 , p_0(61) -> 60
                 , p_0(62) -> 61
                 , p_0(63) -> 60
                 , p_1(65) -> 60
                 , p_1(65) -> 64
                 , p_1(67) -> 14
                 , p_1(67) -> 60
                 , p_1(67) -> 64
                 , p_1(67) -> 66
                 , p_1(67) -> 69
                 , p_1(67) -> 91
                 , p_1(67) -> 97
                 , p_1(67) -> 101
                 , p_1(67) -> 376
                 , p_1(67) -> 380
                 , p_1(67) -> 389
                 , p_1(68) -> 376
                 , p_1(68) -> 380
                 , p_1(68) -> 389
                 , p_1(69) -> 389
                 , p_1(71) -> 70
                 , p_1(73) -> 70
                 , p_1(73) -> 72
                 , p_1(75) -> 70
                 , p_1(75) -> 72
                 , p_1(75) -> 74
                 , p_1(76) -> 75
                 , p_1(77) -> 76
                 , p_1(78) -> 77
                 , p_1(79) -> 76
                 , p_1(80) -> 75
                 , p_1(81) -> 70
                 , p_1(81) -> 72
                 , p_1(81) -> 74
                 , p_1(81) -> 87
                 , p_1(81) -> 89
                 , p_1(88) -> 87
                 , p_1(90) -> 14
                 , p_1(90) -> 69
                 , p_1(90) -> 97
                 , p_1(90) -> 101
                 , p_1(90) -> 376
                 , p_1(90) -> 380
                 , p_1(90) -> 389
                 , p_1(91) -> 376
                 , p_1(91) -> 380
                 , p_1(91) -> 389
                 , p_1(92) -> 14
                 , p_1(92) -> 69
                 , p_1(92) -> 91
                 , p_1(92) -> 97
                 , p_1(92) -> 101
                 , p_1(92) -> 376
                 , p_1(92) -> 380
                 , p_1(92) -> 389
                 , p_1(93) -> 92
                 , p_1(96) -> 97
                 , p_1(96) -> 101
                 , p_1(97) -> 376
                 , p_1(97) -> 380
                 , p_1(98) -> 97
                 , p_1(98) -> 101
                 , p_1(99) -> 98
                 , p_1(100) -> 97
                 , p_1(100) -> 101
                 , p_1(101) -> 376
                 , p_1(101) -> 380
                 , p_1(380) -> 389
                 , p_2(68) -> 389
                 , p_2(69) -> 389
                 , p_2(91) -> 389
                 , p_2(102) -> 97
                 , p_2(102) -> 101
                 , p_2(102) -> 376
                 , p_2(102) -> 380
                 , p_2(103) -> 376
                 , p_2(103) -> 380
                 , p_2(103) -> 389
                 , p_2(104) -> 97
                 , p_2(104) -> 101
                 , p_2(104) -> 103
                 , p_2(104) -> 376
                 , p_2(104) -> 380
                 , p_2(105) -> 376
                 , p_2(105) -> 380
                 , p_2(105) -> 389
                 , p_2(106) -> 389
                 , p_2(108) -> 107
                 , p_2(110) -> 107
                 , p_2(110) -> 109
                 , p_2(112) -> 107
                 , p_2(112) -> 109
                 , p_2(112) -> 111
                 , p_2(113) -> 112
                 , p_2(114) -> 113
                 , p_2(115) -> 114
                 , p_2(116) -> 113
                 , p_2(117) -> 112
                 , p_2(118) -> 107
                 , p_2(118) -> 109
                 , p_2(118) -> 111
                 , p_2(118) -> 127
                 , p_2(118) -> 129
                 , p_2(123) -> 122
                 , p_2(124) -> 123
                 , p_2(125) -> 122
                 , p_2(125) -> 126
                 , p_2(128) -> 127
                 , p_2(134) -> 133
                 , p_2(135) -> 134
                 , p_2(136) -> 133
                 , p_2(136) -> 137
                 , p_2(139) -> 138
                 , p_2(141) -> 138
                 , p_2(141) -> 140
                 , p_2(141) -> 148
                 , p_2(141) -> 150
                 , p_2(141) -> 152
                 , p_2(142) -> 122
                 , p_2(142) -> 126
                 , p_2(149) -> 148
                 , p_2(151) -> 148
                 , p_2(151) -> 150
                 , p_2(153) -> 148
                 , p_2(153) -> 150
                 , p_2(153) -> 152
                 , p_2(154) -> 153
                 , p_2(155) -> 154
                 , p_2(156) -> 155
                 , p_2(157) -> 154
                 , p_2(158) -> 153
                 , p_2(170) -> 133
                 , p_2(170) -> 137
                 , p_2(177) -> 176
                 , p_2(179) -> 176
                 , p_2(179) -> 178
                 , p_2(181) -> 176
                 , p_2(181) -> 178
                 , p_2(181) -> 180
                 , p_2(182) -> 181
                 , p_2(183) -> 182
                 , p_2(184) -> 183
                 , p_2(185) -> 182
                 , p_2(186) -> 181
                 , p_2(187) -> 176
                 , p_2(187) -> 178
                 , p_2(187) -> 180
                 , p_2(187) -> 208
                 , p_2(187) -> 210
                 , p_2(204) -> 203
                 , p_2(205) -> 204
                 , p_2(206) -> 203
                 , p_2(206) -> 207
                 , p_2(209) -> 208
                 , p_2(215) -> 214
                 , p_2(216) -> 215
                 , p_2(217) -> 214
                 , p_2(217) -> 218
                 , p_2(220) -> 219
                 , p_2(222) -> 219
                 , p_2(222) -> 221
                 , p_2(222) -> 229
                 , p_2(222) -> 231
                 , p_2(222) -> 233
                 , p_2(223) -> 203
                 , p_2(223) -> 207
                 , p_2(230) -> 229
                 , p_2(232) -> 229
                 , p_2(232) -> 231
                 , p_2(234) -> 229
                 , p_2(234) -> 231
                 , p_2(234) -> 233
                 , p_2(235) -> 234
                 , p_2(236) -> 235
                 , p_2(237) -> 236
                 , p_2(238) -> 235
                 , p_2(239) -> 234
                 , p_2(251) -> 214
                 , p_2(251) -> 218
                 , p_2(258) -> 257
                 , p_2(260) -> 257
                 , p_2(260) -> 259
                 , p_2(262) -> 257
                 , p_2(262) -> 259
                 , p_2(262) -> 261
                 , p_2(263) -> 262
                 , p_2(264) -> 263
                 , p_2(265) -> 264
                 , p_2(266) -> 263
                 , p_2(267) -> 262
                 , p_2(268) -> 257
                 , p_2(268) -> 259
                 , p_2(268) -> 261
                 , p_2(268) -> 289
                 , p_2(268) -> 291
                 , p_2(285) -> 284
                 , p_2(286) -> 285
                 , p_2(287) -> 284
                 , p_2(287) -> 288
                 , p_2(290) -> 289
                 , p_2(296) -> 295
                 , p_2(297) -> 296
                 , p_2(298) -> 295
                 , p_2(298) -> 299
                 , p_2(301) -> 300
                 , p_2(303) -> 300
                 , p_2(303) -> 302
                 , p_2(303) -> 310
                 , p_2(303) -> 312
                 , p_2(303) -> 314
                 , p_2(304) -> 284
                 , p_2(304) -> 288
                 , p_2(311) -> 310
                 , p_2(313) -> 310
                 , p_2(313) -> 312
                 , p_2(315) -> 310
                 , p_2(315) -> 312
                 , p_2(315) -> 314
                 , p_2(316) -> 315
                 , p_2(317) -> 316
                 , p_2(318) -> 317
                 , p_2(319) -> 316
                 , p_2(320) -> 315
                 , p_2(332) -> 295
                 , p_2(332) -> 299
                 , p_2(339) -> 338
                 , p_2(341) -> 338
                 , p_2(341) -> 340
                 , p_2(343) -> 338
                 , p_2(343) -> 340
                 , p_2(343) -> 342
                 , p_2(344) -> 343
                 , p_2(345) -> 344
                 , p_2(346) -> 345
                 , p_2(347) -> 344
                 , p_2(348) -> 343
                 , p_2(349) -> 338
                 , p_2(349) -> 340
                 , p_2(349) -> 342
                 , p_2(349) -> 370
                 , p_2(349) -> 372
                 , p_2(366) -> 365
                 , p_2(367) -> 366
                 , p_2(368) -> 365
                 , p_2(368) -> 369
                 , p_2(371) -> 370
                 , p_2(375) -> 376
                 , p_2(375) -> 380
                 , p_2(376) -> 389
                 , p_2(377) -> 376
                 , p_2(377) -> 380
                 , p_2(378) -> 377
                 , p_2(379) -> 376
                 , p_2(379) -> 380
                 , p_2(380) -> 389
                 , p_2(382) -> 381
                 , p_2(384) -> 381
                 , p_2(384) -> 383
                 , p_2(384) -> 391
                 , p_2(384) -> 393
                 , p_2(384) -> 395
                 , p_2(385) -> 365
                 , p_2(385) -> 369
                 , p_2(392) -> 391
                 , p_2(394) -> 391
                 , p_2(394) -> 393
                 , p_2(396) -> 391
                 , p_2(396) -> 393
                 , p_2(396) -> 395
                 , p_2(397) -> 396
                 , p_2(398) -> 397
                 , p_2(399) -> 398
                 , p_2(400) -> 397
                 , p_2(401) -> 396
                 , s_0(2) -> 4
                 , s_0(2) -> 15
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 20
                 , s_0(2) -> 21
                 , s_0(2) -> 22
                 , s_0(2) -> 70
                 , s_0(2) -> 72
                 , s_0(2) -> 74
                 , s_0(2) -> 87
                 , s_0(2) -> 89
                 , s_0(2) -> 381
                 , s_0(2) -> 383
                 , s_0(2) -> 391
                 , s_0(2) -> 393
                 , s_0(2) -> 395
                 , s_0(4) -> 4
                 , s_0(4) -> 15
                 , s_0(4) -> 17
                 , s_0(4) -> 19
                 , s_0(4) -> 20
                 , s_0(4) -> 21
                 , s_0(4) -> 22
                 , s_0(4) -> 70
                 , s_0(4) -> 72
                 , s_0(4) -> 74
                 , s_0(4) -> 87
                 , s_0(4) -> 89
                 , s_0(4) -> 381
                 , s_0(4) -> 383
                 , s_0(4) -> 391
                 , s_0(4) -> 393
                 , s_0(4) -> 395
                 , s_0(11) -> 10
                 , s_0(13) -> 12
                 , s_0(14) -> 11
                 , s_0(14) -> 13
                 , s_0(17) -> 16
                 , s_0(19) -> 18
                 , s_0(22) -> 2
                 , s_0(22) -> 15
                 , s_0(22) -> 17
                 , s_0(22) -> 19
                 , s_0(22) -> 20
                 , s_0(22) -> 21
                 , s_0(22) -> 22
                 , s_0(22) -> 70
                 , s_0(22) -> 72
                 , s_0(22) -> 74
                 , s_0(22) -> 87
                 , s_0(22) -> 89
                 , s_0(22) -> 381
                 , s_0(22) -> 383
                 , s_0(22) -> 391
                 , s_0(22) -> 393
                 , s_0(22) -> 395
                 , s_0(52) -> 51
                 , s_0(55) -> 54
                 , s_0(56) -> 53
                 , s_0(56) -> 55
                 , s_0(57) -> 14
                 , s_0(58) -> 57
                 , s_0(59) -> 58
                 , s_0(60) -> 59
                 , s_0(63) -> 62
                 , s_0(64) -> 61
                 , s_0(64) -> 63
                 , s_1(2) -> 75
                 , s_1(2) -> 81
                 , s_1(2) -> 338
                 , s_1(2) -> 340
                 , s_1(2) -> 342
                 , s_1(2) -> 370
                 , s_1(2) -> 372
                 , s_1(4) -> 75
                 , s_1(4) -> 81
                 , s_1(4) -> 338
                 , s_1(4) -> 340
                 , s_1(4) -> 342
                 , s_1(4) -> 370
                 , s_1(4) -> 372
                 , s_1(22) -> 75
                 , s_1(22) -> 81
                 , s_1(22) -> 338
                 , s_1(22) -> 340
                 , s_1(22) -> 342
                 , s_1(22) -> 370
                 , s_1(22) -> 372
                 , s_1(66) -> 65
                 , s_1(67) -> 93
                 , s_1(68) -> 67
                 , s_1(68) -> 92
                 , s_1(69) -> 14
                 , s_1(69) -> 60
                 , s_1(69) -> 64
                 , s_1(69) -> 66
                 , s_1(69) -> 68
                 , s_1(69) -> 69
                 , s_1(69) -> 91
                 , s_1(69) -> 97
                 , s_1(69) -> 101
                 , s_1(69) -> 376
                 , s_1(69) -> 380
                 , s_1(69) -> 389
                 , s_1(72) -> 71
                 , s_1(74) -> 73
                 , s_1(78) -> 85
                 , s_1(78) -> 176
                 , s_1(78) -> 178
                 , s_1(78) -> 180
                 , s_1(78) -> 208
                 , s_1(78) -> 210
                 , s_1(79) -> 78
                 , s_1(79) -> 219
                 , s_1(79) -> 221
                 , s_1(79) -> 229
                 , s_1(79) -> 231
                 , s_1(79) -> 233
                 , s_1(80) -> 77
                 , s_1(80) -> 79
                 , s_1(80) -> 257
                 , s_1(80) -> 259
                 , s_1(80) -> 261
                 , s_1(80) -> 289
                 , s_1(80) -> 291
                 , s_1(81) -> 76
                 , s_1(81) -> 80
                 , s_1(81) -> 300
                 , s_1(81) -> 302
                 , s_1(81) -> 310
                 , s_1(81) -> 312
                 , s_1(81) -> 314
                 , s_1(82) -> 75
                 , s_1(82) -> 81
                 , s_1(82) -> 338
                 , s_1(82) -> 340
                 , s_1(82) -> 342
                 , s_1(82) -> 370
                 , s_1(82) -> 372
                 , s_1(83) -> 70
                 , s_1(83) -> 72
                 , s_1(83) -> 74
                 , s_1(83) -> 82
                 , s_1(83) -> 87
                 , s_1(83) -> 89
                 , s_1(83) -> 381
                 , s_1(83) -> 383
                 , s_1(83) -> 391
                 , s_1(83) -> 393
                 , s_1(83) -> 395
                 , s_1(84) -> 83
                 , s_1(84) -> 107
                 , s_1(84) -> 109
                 , s_1(84) -> 111
                 , s_1(84) -> 127
                 , s_1(84) -> 129
                 , s_1(85) -> 84
                 , s_1(85) -> 138
                 , s_1(85) -> 140
                 , s_1(85) -> 148
                 , s_1(85) -> 150
                 , s_1(85) -> 152
                 , s_1(89) -> 88
                 , s_1(91) -> 90
                 , s_1(94) -> 14
                 , s_1(94) -> 69
                 , s_1(94) -> 376
                 , s_1(94) -> 380
                 , s_1(94) -> 389
                 , s_1(95) -> 94
                 , s_1(95) -> 389
                 , s_1(96) -> 95
                 , s_1(97) -> 96
                 , s_1(100) -> 99
                 , s_1(101) -> 98
                 , s_1(101) -> 100
                 , s_2(2) -> 384
                 , s_2(2) -> 396
                 , s_2(4) -> 384
                 , s_2(4) -> 396
                 , s_2(22) -> 384
                 , s_2(22) -> 396
                 , s_2(78) -> 222
                 , s_2(78) -> 234
                 , s_2(79) -> 262
                 , s_2(79) -> 268
                 , s_2(80) -> 303
                 , s_2(80) -> 315
                 , s_2(81) -> 343
                 , s_2(81) -> 349
                 , s_2(82) -> 384
                 , s_2(82) -> 396
                 , s_2(83) -> 112
                 , s_2(83) -> 118
                 , s_2(84) -> 141
                 , s_2(84) -> 153
                 , s_2(85) -> 181
                 , s_2(85) -> 187
                 , s_2(87) -> 420
                 , s_2(103) -> 102
                 , s_2(105) -> 104
                 , s_2(106) -> 97
                 , s_2(106) -> 101
                 , s_2(106) -> 103
                 , s_2(106) -> 105
                 , s_2(106) -> 376
                 , s_2(106) -> 380
                 , s_2(109) -> 108
                 , s_2(111) -> 110
                 , s_2(116) -> 115
                 , s_2(117) -> 114
                 , s_2(117) -> 116
                 , s_2(118) -> 113
                 , s_2(118) -> 117
                 , s_2(119) -> 69
                 , s_2(119) -> 376
                 , s_2(119) -> 380
                 , s_2(119) -> 389
                 , s_2(120) -> 119
                 , s_2(120) -> 389
                 , s_2(121) -> 120
                 , s_2(122) -> 121
                 , s_2(125) -> 124
                 , s_2(126) -> 123
                 , s_2(126) -> 125
                 , s_2(129) -> 128
                 , s_2(130) -> 106
                 , s_2(130) -> 376
                 , s_2(130) -> 380
                 , s_2(130) -> 389
                 , s_2(131) -> 130
                 , s_2(131) -> 389
                 , s_2(132) -> 131
                 , s_2(133) -> 132
                 , s_2(136) -> 135
                 , s_2(137) -> 134
                 , s_2(137) -> 136
                 , s_2(140) -> 139
                 , s_2(141) -> 154
                 , s_2(141) -> 158
                 , s_2(144) -> 142
                 , s_2(146) -> 122
                 , s_2(146) -> 126
                 , s_2(146) -> 144
                 , s_2(150) -> 149
                 , s_2(152) -> 151
                 , s_2(157) -> 156
                 , s_2(158) -> 155
                 , s_2(158) -> 157
                 , s_2(172) -> 170
                 , s_2(174) -> 133
                 , s_2(174) -> 137
                 , s_2(174) -> 172
                 , s_2(178) -> 177
                 , s_2(180) -> 179
                 , s_2(185) -> 184
                 , s_2(186) -> 183
                 , s_2(186) -> 185
                 , s_2(187) -> 182
                 , s_2(187) -> 186
                 , s_2(200) -> 146
                 , s_2(201) -> 200
                 , s_2(202) -> 201
                 , s_2(203) -> 202
                 , s_2(206) -> 205
                 , s_2(207) -> 204
                 , s_2(207) -> 206
                 , s_2(210) -> 209
                 , s_2(211) -> 174
                 , s_2(212) -> 211
                 , s_2(213) -> 212
                 , s_2(214) -> 213
                 , s_2(217) -> 216
                 , s_2(218) -> 215
                 , s_2(218) -> 217
                 , s_2(221) -> 220
                 , s_2(222) -> 235
                 , s_2(222) -> 239
                 , s_2(225) -> 223
                 , s_2(227) -> 203
                 , s_2(227) -> 207
                 , s_2(227) -> 225
                 , s_2(231) -> 230
                 , s_2(233) -> 232
                 , s_2(238) -> 237
                 , s_2(239) -> 236
                 , s_2(239) -> 238
                 , s_2(253) -> 251
                 , s_2(255) -> 214
                 , s_2(255) -> 218
                 , s_2(255) -> 253
                 , s_2(259) -> 258
                 , s_2(261) -> 260
                 , s_2(266) -> 265
                 , s_2(267) -> 264
                 , s_2(267) -> 266
                 , s_2(268) -> 263
                 , s_2(268) -> 267
                 , s_2(281) -> 227
                 , s_2(282) -> 281
                 , s_2(283) -> 282
                 , s_2(284) -> 283
                 , s_2(287) -> 286
                 , s_2(288) -> 285
                 , s_2(288) -> 287
                 , s_2(291) -> 290
                 , s_2(292) -> 255
                 , s_2(293) -> 292
                 , s_2(294) -> 293
                 , s_2(295) -> 294
                 , s_2(298) -> 297
                 , s_2(299) -> 296
                 , s_2(299) -> 298
                 , s_2(302) -> 301
                 , s_2(303) -> 316
                 , s_2(303) -> 320
                 , s_2(306) -> 304
                 , s_2(308) -> 284
                 , s_2(308) -> 288
                 , s_2(308) -> 306
                 , s_2(312) -> 311
                 , s_2(314) -> 313
                 , s_2(319) -> 318
                 , s_2(320) -> 317
                 , s_2(320) -> 319
                 , s_2(334) -> 332
                 , s_2(336) -> 295
                 , s_2(336) -> 299
                 , s_2(336) -> 334
                 , s_2(340) -> 339
                 , s_2(342) -> 341
                 , s_2(347) -> 346
                 , s_2(348) -> 345
                 , s_2(348) -> 347
                 , s_2(349) -> 344
                 , s_2(349) -> 348
                 , s_2(362) -> 308
                 , s_2(363) -> 362
                 , s_2(364) -> 363
                 , s_2(365) -> 364
                 , s_2(368) -> 367
                 , s_2(369) -> 366
                 , s_2(369) -> 368
                 , s_2(372) -> 371
                 , s_2(373) -> 336
                 , s_2(374) -> 373
                 , s_2(375) -> 374
                 , s_2(376) -> 375
                 , s_2(379) -> 378
                 , s_2(380) -> 377
                 , s_2(380) -> 379
                 , s_2(383) -> 382
                 , s_2(384) -> 397
                 , s_2(384) -> 401
                 , s_2(387) -> 385
                 , s_2(389) -> 365
                 , s_2(389) -> 369
                 , s_2(389) -> 387
                 , s_2(393) -> 392
                 , s_2(395) -> 394
                 , s_2(400) -> 399
                 , s_2(401) -> 398
                 , s_2(401) -> 400
                 , s_2(413) -> 420
                 , s_2(414) -> 413
                 , s_2(415) -> 414
                 , s_2(416) -> 415
                 , s_2(417) -> 416
                 , s_2(418) -> 417
                 , s_2(419) -> 418
                 , s_2(420) -> 419
                 , j_0(15) -> 14
                 , j_1(70) -> 69
                 , j_1(70) -> 376
                 , j_1(70) -> 380
                 , j_1(70) -> 389
                 , j_2(107) -> 106
                 , j_2(107) -> 376
                 , j_2(107) -> 380
                 , j_2(107) -> 389
                 , j_2(148) -> 146
                 , j_2(176) -> 174
                 , j_2(229) -> 227
                 , j_2(257) -> 255
                 , j_2(310) -> 308
                 , j_2(338) -> 336
                 , j_2(391) -> 389
                 , i^#_0(2) -> 6
                 , i^#_0(4) -> 6
                 , p^#_0(2) -> 8
                 , p^#_0(4) -> 8
                 , p^#_0(10) -> 9
                 , p^#_1(65) -> 86
                 , c_1_0(9) -> 6
                 , c_1_1(86) -> 6}
      
   3) {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_5()
             , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              Weak Rules:
                {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                 , p^#(s(x1)) -> c_5()
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
                Weak Rules:
                  {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                   , p^#(s(x1)) -> c_5()
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 16
                 , i_1(8) -> 31
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 17
                 , 0_0(2) -> 19
                 , 0_0(2) -> 21
                 , 0_1(8) -> 7
                 , 0_1(8) -> 13
                 , 0_1(8) -> 15
                 , 0_1(8) -> 16
                 , 0_1(8) -> 31
                 , p_1(4) -> 16
                 , p_1(4) -> 31
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(12) -> 7
                 , p_1(12) -> 16
                 , p_1(12) -> 31
                 , p_1(14) -> 7
                 , p_1(14) -> 13
                 , p_1(14) -> 16
                 , p_1(14) -> 31
                 , p_1(18) -> 17
                 , p_1(20) -> 17
                 , p_1(20) -> 19
                 , p_1(22) -> 17
                 , p_1(22) -> 19
                 , p_1(22) -> 21
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(30) -> 16
                 , p_2(6) -> 16
                 , p_2(6) -> 31
                 , p_2(11) -> 17
                 , p_2(11) -> 19
                 , p_2(11) -> 21
                 , p_2(26) -> 23
                 , p_2(27) -> 22
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 21
                 , s_1(2) -> 11
                 , s_1(2) -> 22
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 23
                 , s_1(11) -> 27
                 , s_1(13) -> 12
                 , s_1(15) -> 14
                 , s_1(16) -> 7
                 , s_1(16) -> 13
                 , s_1(16) -> 15
                 , s_1(16) -> 16
                 , s_1(16) -> 31
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(26) -> 25
                 , s_1(27) -> 24
                 , s_1(27) -> 26
                 , s_1(28) -> 16
                 , s_1(29) -> 28
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , j_1(17) -> 16
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1
                 , c_5_0() -> 1
                 , c_5_1() -> 3}
      
   4) {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
               , p^#(s(x1)) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(s(x1)) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [13]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                 , p^#(s(x1)) -> c_5()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                   , p^#(s(x1)) -> c_5()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 17
                 , i_1(8) -> 32
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 18
                 , 0_0(2) -> 20
                 , 0_0(2) -> 22
                 , 0_1(8) -> 7
                 , 0_1(8) -> 14
                 , 0_1(8) -> 16
                 , 0_1(8) -> 17
                 , 0_1(8) -> 32
                 , p_1(4) -> 17
                 , p_1(4) -> 32
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(13) -> 7
                 , p_1(13) -> 17
                 , p_1(13) -> 32
                 , p_1(15) -> 7
                 , p_1(15) -> 14
                 , p_1(15) -> 17
                 , p_1(15) -> 32
                 , p_1(19) -> 18
                 , p_1(21) -> 18
                 , p_1(21) -> 20
                 , p_1(23) -> 18
                 , p_1(23) -> 20
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(31) -> 17
                 , p_2(6) -> 17
                 , p_2(6) -> 32
                 , p_2(11) -> 18
                 , p_2(11) -> 20
                 , p_2(11) -> 22
                 , p_2(27) -> 24
                 , p_2(28) -> 23
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 18
                 , s_0(2) -> 20
                 , s_0(2) -> 22
                 , s_1(2) -> 11
                 , s_1(2) -> 23
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 24
                 , s_1(11) -> 28
                 , s_1(14) -> 13
                 , s_1(16) -> 15
                 , s_1(17) -> 7
                 , s_1(17) -> 14
                 , s_1(17) -> 16
                 , s_1(17) -> 17
                 , s_1(17) -> 32
                 , s_1(20) -> 19
                 , s_1(22) -> 21
                 , s_1(27) -> 26
                 , s_1(28) -> 25
                 , s_1(28) -> 27
                 , s_1(29) -> 17
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(32) -> 31
                 , j_1(18) -> 17
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , p^#_2(6) -> 12
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1
                 , c_4_2(12) -> 3
                 , c_5_0() -> 1
                 , c_5_1() -> 3
                 , c_5_2() -> 12}
      
   5) {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))
       , p^#(0(x1)) -> c_6()}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
               , p^#(0(x1)) -> c_6()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(0(x1)) -> c_6()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p^#(0(x1)) -> c_6()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(0(x1)) -> c_6()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , p^#(0(x1)) -> c_6()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [13]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                 , p^#(0(x1)) -> c_6()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                   , p^#(0(x1)) -> c_6()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 17
                 , i_1(8) -> 32
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 18
                 , 0_0(2) -> 20
                 , 0_0(2) -> 22
                 , 0_1(8) -> 7
                 , 0_1(8) -> 14
                 , 0_1(8) -> 16
                 , 0_1(8) -> 17
                 , 0_1(8) -> 32
                 , p_1(4) -> 17
                 , p_1(4) -> 32
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(13) -> 7
                 , p_1(13) -> 17
                 , p_1(13) -> 32
                 , p_1(15) -> 7
                 , p_1(15) -> 14
                 , p_1(15) -> 17
                 , p_1(15) -> 32
                 , p_1(19) -> 18
                 , p_1(21) -> 18
                 , p_1(21) -> 20
                 , p_1(23) -> 18
                 , p_1(23) -> 20
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(31) -> 17
                 , p_2(6) -> 17
                 , p_2(6) -> 32
                 , p_2(11) -> 18
                 , p_2(11) -> 20
                 , p_2(11) -> 22
                 , p_2(27) -> 24
                 , p_2(28) -> 23
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 18
                 , s_0(2) -> 20
                 , s_0(2) -> 22
                 , s_1(2) -> 11
                 , s_1(2) -> 23
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 24
                 , s_1(11) -> 28
                 , s_1(14) -> 13
                 , s_1(16) -> 15
                 , s_1(17) -> 7
                 , s_1(17) -> 14
                 , s_1(17) -> 16
                 , s_1(17) -> 17
                 , s_1(17) -> 32
                 , s_1(20) -> 19
                 , s_1(22) -> 21
                 , s_1(27) -> 26
                 , s_1(28) -> 25
                 , s_1(28) -> 27
                 , s_1(29) -> 17
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(32) -> 31
                 , j_1(18) -> 17
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , p^#_2(6) -> 12
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1
                 , c_4_2(12) -> 3
                 , c_6_0() -> 1}
      
   6) {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              Weak Rules:
                {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
                Weak Rules:
                  {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 16
                 , i_1(8) -> 31
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 17
                 , 0_0(2) -> 19
                 , 0_0(2) -> 21
                 , 0_1(8) -> 7
                 , 0_1(8) -> 13
                 , 0_1(8) -> 15
                 , 0_1(8) -> 16
                 , 0_1(8) -> 31
                 , p_1(4) -> 16
                 , p_1(4) -> 31
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(12) -> 7
                 , p_1(12) -> 16
                 , p_1(12) -> 31
                 , p_1(14) -> 7
                 , p_1(14) -> 13
                 , p_1(14) -> 16
                 , p_1(14) -> 31
                 , p_1(18) -> 17
                 , p_1(20) -> 17
                 , p_1(20) -> 19
                 , p_1(22) -> 17
                 , p_1(22) -> 19
                 , p_1(22) -> 21
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(30) -> 16
                 , p_2(6) -> 16
                 , p_2(6) -> 31
                 , p_2(11) -> 17
                 , p_2(11) -> 19
                 , p_2(11) -> 21
                 , p_2(26) -> 23
                 , p_2(27) -> 22
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 21
                 , s_1(2) -> 11
                 , s_1(2) -> 22
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 23
                 , s_1(11) -> 27
                 , s_1(13) -> 12
                 , s_1(15) -> 14
                 , s_1(16) -> 7
                 , s_1(16) -> 13
                 , s_1(16) -> 15
                 , s_1(16) -> 16
                 , s_1(16) -> 31
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(26) -> 25
                 , s_1(27) -> 24
                 , s_1(27) -> 26
                 , s_1(28) -> 16
                 , s_1(29) -> 28
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , j_1(17) -> 16
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1}
      
   7) {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
       , p^#(p(s(x1))) -> c_4(p^#(x1))}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
               , p^#(p(s(x1))) -> c_4(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [3]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                 , p^#(p(s(x1))) -> c_4(p^#(x1))}
              Weak Rules:
                {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                 , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
                   , p^#(p(s(x1))) -> c_4(p^#(x1))}
                Weak Rules:
                  {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
                   , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 17
                 , i_1(8) -> 32
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 18
                 , 0_0(2) -> 20
                 , 0_0(2) -> 22
                 , 0_1(8) -> 7
                 , 0_1(8) -> 14
                 , 0_1(8) -> 16
                 , 0_1(8) -> 17
                 , 0_1(8) -> 32
                 , p_1(4) -> 17
                 , p_1(4) -> 32
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(13) -> 7
                 , p_1(13) -> 17
                 , p_1(13) -> 32
                 , p_1(15) -> 7
                 , p_1(15) -> 14
                 , p_1(15) -> 17
                 , p_1(15) -> 32
                 , p_1(19) -> 18
                 , p_1(21) -> 18
                 , p_1(21) -> 20
                 , p_1(23) -> 18
                 , p_1(23) -> 20
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(31) -> 17
                 , p_2(6) -> 17
                 , p_2(6) -> 32
                 , p_2(11) -> 18
                 , p_2(11) -> 20
                 , p_2(11) -> 22
                 , p_2(27) -> 24
                 , p_2(28) -> 23
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 18
                 , s_0(2) -> 20
                 , s_0(2) -> 22
                 , s_1(2) -> 11
                 , s_1(2) -> 23
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 24
                 , s_1(11) -> 28
                 , s_1(14) -> 13
                 , s_1(16) -> 15
                 , s_1(17) -> 7
                 , s_1(17) -> 14
                 , s_1(17) -> 16
                 , s_1(17) -> 17
                 , s_1(17) -> 32
                 , s_1(20) -> 19
                 , s_1(22) -> 21
                 , s_1(27) -> 26
                 , s_1(28) -> 25
                 , s_1(28) -> 27
                 , s_1(29) -> 17
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(32) -> 31
                 , j_1(18) -> 17
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , p^#_2(6) -> 12
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1
                 , c_4_2(12) -> 3}
      
   8) {  j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
       , p^#(0(x1)) -> c_6()}
      
      The usable rules for this path are the following:
      {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
       , i(s(x1)) ->
         p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
       , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
       , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))
               , p^#(0(x1)) -> c_6()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
               , i(s(x1)) ->
                 p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
               , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
             , p^#(0(x1)) -> c_6()}
            and weakly orienting the rules
            {  i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
             , i(s(x1)) ->
               p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
             , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
               , p^#(0(x1)) -> c_6()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [1] x1 + [1]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [9]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
              Weak Rules:
                {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                 , p^#(0(x1)) -> c_6()
                 , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                 , i(s(x1)) ->
                   p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                 , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                   , j(s(x1)) -> s(s(s(s(p(p(s(s(i(p(s(p(s(x1)))))))))))))}
                Weak Rules:
                  {  j(0(x1)) -> p(s(p(p(s(s(0(p(s(p(s(x1)))))))))))
                   , p^#(0(x1)) -> c_6()
                   , i(0(x1)) -> p(s(p(s(0(p(s(p(s(x1)))))))))
                   , i(s(x1)) ->
                     p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))))))))
                   , j^#(s(x1)) -> c_3(p^#(p(s(s(i(p(s(p(s(x1))))))))))}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  i_1(8) -> 7
                 , i_1(8) -> 16
                 , i_1(8) -> 31
                 , 0_0(2) -> 2
                 , 0_0(2) -> 8
                 , 0_0(2) -> 10
                 , 0_0(2) -> 17
                 , 0_0(2) -> 19
                 , 0_0(2) -> 21
                 , 0_1(8) -> 7
                 , 0_1(8) -> 13
                 , 0_1(8) -> 15
                 , 0_1(8) -> 16
                 , 0_1(8) -> 31
                 , p_1(4) -> 16
                 , p_1(4) -> 31
                 , p_1(5) -> 4
                 , p_1(9) -> 8
                 , p_1(11) -> 8
                 , p_1(11) -> 10
                 , p_1(12) -> 7
                 , p_1(12) -> 16
                 , p_1(12) -> 31
                 , p_1(14) -> 7
                 , p_1(14) -> 13
                 , p_1(14) -> 16
                 , p_1(14) -> 31
                 , p_1(18) -> 17
                 , p_1(20) -> 17
                 , p_1(20) -> 19
                 , p_1(22) -> 17
                 , p_1(22) -> 19
                 , p_1(22) -> 21
                 , p_1(23) -> 22
                 , p_1(24) -> 23
                 , p_1(25) -> 24
                 , p_1(30) -> 16
                 , p_2(6) -> 16
                 , p_2(6) -> 31
                 , p_2(11) -> 17
                 , p_2(11) -> 19
                 , p_2(11) -> 21
                 , p_2(26) -> 23
                 , p_2(27) -> 22
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 21
                 , s_1(2) -> 11
                 , s_1(2) -> 22
                 , s_1(6) -> 5
                 , s_1(7) -> 4
                 , s_1(7) -> 6
                 , s_1(10) -> 9
                 , s_1(11) -> 23
                 , s_1(11) -> 27
                 , s_1(13) -> 12
                 , s_1(15) -> 14
                 , s_1(16) -> 7
                 , s_1(16) -> 13
                 , s_1(16) -> 15
                 , s_1(16) -> 16
                 , s_1(16) -> 31
                 , s_1(19) -> 18
                 , s_1(21) -> 20
                 , s_1(26) -> 25
                 , s_1(27) -> 24
                 , s_1(27) -> 26
                 , s_1(28) -> 16
                 , s_1(29) -> 28
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , j_1(17) -> 16
                 , p^#_0(2) -> 1
                 , p^#_1(4) -> 3
                 , j^#_0(2) -> 1
                 , c_3_1(3) -> 1
                 , c_6_0() -> 1}
      
   9) {  j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           i(x1) = [0] x1 + [0]
           0(x1) = [1] x1 + [0]
           p(x1) = [1] x1 + [8]
           s(x1) = [1] x1 + [0]
           j(x1) = [0] x1 + [0]
           i^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           j^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {p^#(s(x1)) -> c_5()}
            Weak Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
             , j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  p^#(s(x1)) -> c_5()
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
            
            Details:         
              The given problem does not contain any strict rules
      
   10)
      {j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           i(x1) = [0] x1 + [0]
           0(x1) = [1] x1 + [0]
           p(x1) = [1] x1 + [8]
           s(x1) = [1] x1 + [0]
           j(x1) = [0] x1 + [0]
           i^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           j^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules:
              {j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
            Weak Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  i^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  j^#(0(x1)) -> c_2(p^#(s(p(p(s(s(0(p(s(p(s(x1))))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            
            Details:         
              The given problem does not contain any strict rules
      
   11)
      {  i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))
       , p^#(s(x1)) -> c_5()}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           i(x1) = [0] x1 + [0]
           0(x1) = [1] x1 + [0]
           p(x1) = [1] x1 + [8]
           s(x1) = [1] x1 + [0]
           j(x1) = [0] x1 + [0]
           i^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           j^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {p^#(s(x1)) -> c_5()}
            Weak Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
               , i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_5()}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
             , i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  p^#(s(x1)) -> c_5()
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))
                 , i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
            
            Details:         
              The given problem does not contain any strict rules
      
   12)
      {i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
      
      The usable rules for this path are the following:
      {  p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           i(x1) = [0] x1 + [0]
           0(x1) = [1] x1 + [0]
           p(x1) = [1] x1 + [8]
           s(x1) = [1] x1 + [0]
           j(x1) = [0] x1 + [0]
           i^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           j^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
            Weak Rules:
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  i(x1) = [0] x1 + [0]
                  0(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  j(x1) = [0] x1 + [0]
                  i^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  j^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  i^#(0(x1)) -> c_0(p^#(s(p(s(0(p(s(p(s(x1))))))))))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , p(0(x1)) -> 0(s(s(s(s(s(s(s(s(x1)))))))))}
            
            Details:         
              The given problem does not contain any strict rules